Pumping Lemma

Dr. Nazli Hardy
Adapted from "Introduction to Computer Theory" by Daniel Cohen
Introduction

- A regular language can be defined by an FA/FSM

- Is there a way for us to effectively show that a language is not regular?
Pumping Lemma

• The pumping lemma is useful for disproving the regularity of a specific language.

• The Pumping lemma basically states that all sufficiently long strings \((S) \) in a regular language \((A) \) may be "pumped" – that is,
 • have a middle section of the string \((y^n) \) repeated in an arbitrary number of times \((I \text{ often use } 2 \text{ as my arbitrary } \#) \) – to produce a new string \((S^1) \) that is also a part of the language.
Pumping Lemma

• If A is a regular language, then A can be pumped.

• A has a pumping length (some constant, P) such that any string S (where S>=P) may be divided into 3 parts (x, y, & z)

• S = x y z (3 substrings, x, y, z, with y being non-empty, such that the strings constructed by repeating y, 0 or more times, are still in A).
 • |xy| <=P (i.e. the length of x followed by y must be less or equal to the pumping length, P, thus, imposing a limit on how S may be spilt)

In addition:
• Any string, S^1, constructed from x y^nz (where n>=0) is also an element of A
• y cannot be lambda (i.e. y must be non-empty)
Proof by Contradiction

- Assume the language A is regular
- A has to have a pumping length: P
- (Since A is regular) Any strings, S, in language A, that is longer than P, can be pumped
- Find S | S \geq P
- Divide S into xyz, where $|xy|$ \leq P
- Consider the ways that S can be divided into x y z

- Consider S^1, which is also an element of language A

(contradiction: Show that the necessary conditions cannot be satisfied at the same time)

- Show $S' = x y^n z$ (where n \geq 0) cannot be "pumped" [remember we need to show only one counterexample to disprove "all"]
- Conclude that S' cannot be pumped, because it is not a regular language. S' is an element of language A - thus A is also not a regular language
Pumping Lemma

Example 1: Language A = \{a^n b^n | n \geq 0 \}

Before we get started, consider:

- This language has any number of a’s followed by the same number of b’s
- Consider that we need to keep a count of a’s to determine how many b’s - but FA cannot keep count of anything. FA cannot be used to define this A. (Note: Regular languages can be defined by FA’s)

- Keep the following approach in mind as we go through the examples:
 1. For the Proof by Contradiction, suppose A is a regular language
 2. We need a pumping length, P | any string S, in language A, is greater than or equal to P (S \geq P)
 3. Let’s use pumping length, P = 7 and let’s assign string S = a^p b^p
 4. Consider the ways that S can be divided into xyz, where |xy| \leq P
 5. Now consider S’ = xy^n z, where n \geq 0
 6. Show that S’ cannot be "pumped." [we need to show only ONE counterexample to disprove "all"]
 7. Conclude: String S’ is in language A. If S’ cannot be "pumped" then A cannot be "pumped," and therefore, A is not a regular language
Example 1: Use the pumping Lemma to prove, language \(A = \left\{ a^n b^n \mid n \geq 0 \right\} \) is not regular

[This language has any number of a’s followed by the same number of b’s]

Proof by Contradiction

- Suppose \(A \) is a regular language
- \(S \) is an element of \(A \) (i.e. \(S \) is a word in the language \(A \))
- Let pumping length, \(P \) be 7
- Let's assign \(n = 6 \), so string \(S = a^6 b^6 \)
- Consider the ways that \(S \) can be divided into \(xyz \), where \(|xy| \leq P\)

- Now consider \(S' = xy^m z \), where \(m = 2 \)
- Contradiction: Show that \(S' \) cannot be "pumped."
- Conclude: String \(S' \) is in language \(A \). If \(S' \) cannot be "pumped" then \(A \) cannot be "pumped," and therefore, \(A \) is not a regular language
. Pumping Lemma

Example 1: Continued
Pumping Lemma

Example 2: Use the pumping Lemma to prove, language $A = \{y y \mid y \in (0^n 1)\}$ is not regular
[This language has any number of 0's followed by 1, and then repeated once more (y y)]

Proof by Contradiction

- Suppose A is a regular language
- S is an element of A (i.e. S is a word in the language A)
- Let pumping length, P be 7
- Let's assign $n = 7$, so string $S = 0^7 1$
- Consider the ways that S can be divided into xyz, where $|xy| \leq P$

- Now consider $S' = xy^mz$, where $m = 2$
- Show that S' cannot be "pumped." (in a regular manner) [we need to show only ONE counterexample to disprove "all"]
- Conclude: String S' is in language A. If S' cannot be "pumped" then A cannot be "pumped," and therefore, A is not a regular language
. Pumping Lemma

Example 2: Continued

(Consider the ways that S' can be divided into xy^nz and show that S' cannot be "pumped" (let's assign $n=2$).

String S' is in language A. If S' cannot be "pumped" then A cannot be "pumped," and therefore, A is not a regular language.)