Photoredox catalysis (PRC), utilizing light energy and transition metals to control single-electron transfer reactions, can produce substituted cyclobutanes, as well as many other structural motifs. Natural products containing cyclobutane rings often exhibit antiviral, antifungal, and anticancer activity; methods allowing for efficient entry into related molecular structures are of potential value. By creating a small library of olefins via a two-step synthetic route from 1-indones and tetralones, we have initiated studies toward exploring the substrate scope and limitations of Ruthenium PRC in the context of [2+2] cycloadditions. Building on the work of Chen et al., Ru(bpy)$_3^{2+}$ and Ru(bpm)$_3^{2+}$ will be initially screened against a small library of olefins.