
ESCI 343 – Atmospheric Dynamics II 

Lesson 4 – Introduction to Waves 

 

Reference:  An Introduction to Dynamic Meteorology (3rd edition), J.R. Holton 

Waves in Fluids, J. Lighthill 

Atmosphere-Ocean Dynamics, A.E. Gill 

 

Reading:  Holton, Section 7.2 

 

GENERAL 

The governing equations support many wavelike motions (waves are broadly 

defined as oscillations of the dependent variables.)  Some of the waves supported by the 

equations are: 

• External (surface) gravity waves 

• Internal gravity waves 

• Inertia-gravity waves 

• Acoustic waves (including Lamb waves) 

• Rossby waves 

• Kelvin waves 

• Kelvin-Helmholtz waves 

Some of these waves are important for the dynamics of synoptic scale 

systems, while others are merely “noise.”  In order to understand dynamic 

meteorology, we must understand the waves that can occur in the 

atmosphere. 

 

BASIC DEFINITIONS 

• amplitude – half of the difference in height between a crest and a trough. 

• wavelength () – the distance between crests (or troughs) 

• wave number (K) – 2/; the number of radians in a unit distance in the direction 

of wave propagation (sometimes the wave number is just defined as 1/, in which 

case it is the number of wavelengths per unit distance.) 

o A higher wave number means a shorter wavelength. 

o Units are radians m-1, or sometimes written as just m-1. 

o We can also define wave numbers along each of the axes. 

▪ k is the wave number in the x-direction (k = 2/x). 

▪ l is the wave number in the y-direction (l = 2/y). 

▪ m is the wave number in the z-direction. (m = 2/z). 

o The wave number vector is given by 

kmjlik ˆˆˆ ++


 

(don’t confuse k and k̂ ) and points in the direction of propagation of the 

wave. 

• angular frequency () – 2 times the number of crests passing a point in a unit of 

time. 

o Units are radians s-1, sometimes just written as s-1. 

• phase speed (c) –the speed of an individual crest or trough. 

o For a wave traveling solely in the x-direction, c =  /k. 
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o For a wave traveling solely in the y-direction , c =  /l. 

o For a wave traveling solely in the z-direction , c =  /m. 

o For a wave traveling in an arbitrary direction, c =  /, where  is the 

total wave number given by 2 = k 2 + l 2 + m 2. 

o For a wave traveling in an arbitrary direction, there is a phase speed along 

each axis, given by cx =  /k, cy =  /l, and cz =  /m.  Note that these are 

not the components of a vector!  
ˆˆ ˆ

x y zc c i c j c k + +   

The phase velocity vector is actually given by 

2 2
ˆˆ ˆ( )c k i l j mk

 
=  = + +
 

. 

o The magnitude of the phase velocity (the phase speed) is given by 

c
K


=  . 

• group velocity (cg) – the velocity at which the wave energy moves.  Its 

components are given by 
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o The magnitude of the group velocity (the group speed) is given by 

gc
K


=


 . 

• dispersion relation – an equation that gives the angular frequency of the wave as a 

function of wave number and physical parameters, 

( ), , ,  F k l m physical parameters = . 

Each wave type has a unique dispersion relation.  One of our main goals when 

studying waves is to determine the dispersion relation. 

 

 

WAVE DISPERSION 

 

• If the group velocity is the same as the phase speed of the individual waves 

making up the packet, then the waves are non-dispersive. 

o If waves are non-dispersive, then the shape of the wave packet never 

changes in time. 

• If the group velocity is different than the phase speed on the waves making up the 

packet, then the waves are dispersive. 

o If the waves are dispersive, then the shape of the wave packet will change 

with time. 

• Waves are dispersive if the phase velocity is not equal to the group velocity. 

• Waves are non-dispersive if the phase velocity is equal to the group velocity. 

 

THE EQUATION FOR A WAVE 

The equation for a wave traveling in the positive x direction is 

 
)cos()sin(),( txkBtxkAtxu  −+−=  
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An alternate way of writing this is 

 
)(cos)(sin),( ctxkBctxkAtxu −+−=  

 

For a wave traveling in the negative x direction, the equation is 

 
)cos()sin(),( txkBtxkAtxu  +++=  

 

EULER’S FORMULA 

 Euler’s formula states that 

 

 sincos ie i +=  

 

From Euler’s formula we have the following two identities: 
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Using Euler’s formula a wave traveling in the positive x-direction can be written as 
( )tkxiAetxu −=),(  

a wave traveling in the negative x-direction can be written as 
( )tkxiAetxu +=),( , 

where the amplitude A may itself be a complex number, 

ir iaaA += , 

and gives information about the phase of the wave. 

We will frequently use this complex notation for waves because it makes 

differentiation more straightforward because you don’t have to remember whether or not 

to change the sign (as you do when differentiating sine and cosine functions). 

 

The complex amplitude, A, gives information about the phase of the wave.  In this 

form we have the following phase relations between two waves (u and v), given by 
( )

( )tkxi

tkxi

Bev

Aeu





−

−

=

=
 

 

phaseofoutivu

phaseofoutvu

phaseofoutivu

phaseinvu







270

180

90



−

−



 

 



 4 

 

SPECTRAL ANALYSIS 

 

It is rare to find a wave of a single wavelength in the atmosphere.  Instead, there 

are many waves of different wavelengths superimposed on one another.  However, we 

can use the concept of spectral analysis to isolate and study individual waves, recognizing 

that we can later sum them up if need be.  So, keep in mind that real atmospheric 

disturbances are a collection of many individual waves of differing wavelengths. 

 

Fourier Series – Applies to Continuous, Periodic Functions 

 

Most continuous periodic functions (period = L) can be represented by an infinite 

sum of sine and cosine functions as 
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where the Fourier coefficients are given by 
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The Fourier coefficients give the amplitudes of the various sine and cosine waves needed 

to replicate the original function. 

• The coefficient a0 is just the average of the function. 

• The coefficients an are the coefficients of the cosine waves (the even part of the 

function). 

• The coefficients bn are the coefficients of the sine waves (the odd part of the 

function). 

For a completely even function, the bn’s would all be zero, while for a completely odd 

function, the an’s would be zero. 

Fourier series can also be represented using complex notation, and in this notation 
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where the coefficients n are complex numbers, with the real part representing the 

amplitudes of the cosine waves, and the imaginary part representing the amplitudes of the 

sine waves,  
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Each of the Fourier coefficients, n, are associated with a sinusoidal wave of a 

certain wavelength.  If the original function contained one pure wave, then there would 
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only be two Fourier coefficients (a1 and b1).  The more sinusoids (more wave numbers) 

needed to represent the function, the more Fourier coefficients are necessary. 

In general: 

• Smoother functions require fewer waves to recreate, and have fewer higher 

frequency components. 

• Sharper functions require more waves to recreate, and have more higher 

frequency components. 

• Broad functions require fewer waves to recreate, and have fewer higher frequency 

components. 

• Narrow functions require more waves to recreate, and have more higher 

frequency components. 

 

Fourier Transforms – Applies to Continuous, Aperiodic Functions 

 

Fourier analysis can be extended to functions that are continuous, but not periodic 

(aperiodic functions).  This is done by representing the function as an infinite integral 

 


−

= dkikxkFxf exp)(
2

1
)(


                                              (1) 

where the Fourier coefficients are represented by F(k), which is a complex number given 

by 

 


−

−= dxikxxfkF exp)()( .                                              (2) 

Equations (1) and (1) are called the Fourier transform pairs.  Equation (1) is the 

representation of the function in “physical” space.  Equation (2) is the representation of 

the function in “frequency” or “wave number” space.  As with Fourier series, the real part 

of the Fourier coefficient, Re[F(k)], represents the cosine, or even part of the function, 

while the imaginary part, Im[F(k)], represents the sine, or odd part of the function. 

 

 

FOURIER SPECTRA OF SOME EXAMPLE FUNCTIONS 

 

As mentioned previously, sharp, narrow functions have more and higher 

frequency waves in their Fourier spectra then do smooth, broad functions.  The figures 

below shows some example functions and their associated Fourier spectra.  The first four 

figures show box functions of various width, while the second four pictures show 

Gaussian curves of various width.  Things to note: 

• In general, the narrower the function, the broader the spectrum, and vice 

versa. 

• The power series of a Gaussian curve is also a Gaussian curve. 

• An impulse function has an infinitely broad power spectrum, while an 

infinitely broad function has a single spike for its power spectrum. 
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EXERCISES 

 

1.  Show the following to be true: 

( ) ( ) 
( ) ( ) 

( ) ( ) 
( ) ( ) tkxi
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2.  Show the following to be true: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )tkxitkxi
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3.  A wave is represented in complex notation as 
( )tkxiAetxu −=),(  

where iA 32−= .  Show that this is equivalent to representing the wave as 

( ) ( )tkxtkxtxu  −+−= sin3cos2),( . 

 

 

4.  Find the phase difference between the following two waves, 
( )

( )tkxi
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for the following values of A and B. 

 

a.  iBiA 23;32 +−=+=  

 

b.  iBiA 32;32 −−=+=  

 

c.  iBiA 23;32 −=+=  

 

d.  iBiA 64;32 +=+=  

 

e.  iBiA 69;32 −=+=  
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5.  a.  Let a wave be represented by 
ikxexu =)( . 

Show that u and du/dx are 270 out of phase. 

 

b.  Let a wave be represented by  

kxxu cos)( = . 

Show that u and du/dx are 270 out of phase, which shows the consistency of 

representing sinusoids using complex notation. 

 

6.  A wave traveling in two dimensions is represented as 
( )tlykxiAetyxu −+=),,( . 

Show that  

( )ulku 222 +−= , 

demonstrating the Laplacian of a sinusoidal function is proportional to the negative of 

the original function. 

 

7.  What is the physical meaning of a complex frequency?  In other words, if  has an 

imaginary part, what does this imply?  Hint:  Put ir i +=  into 
( )tkxieu −=  

and see what you get. 

 

8.  Start with the definition of group velocity, k
m

j
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, and show that 

the magnitude of the group velocity (the group speed) is given by gc
K


=


 . 

 

 


